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On the game of giving and asking for reasons
o from consecutions to sequents
o from the abstract (Tarski) to Hilbert-Frege systems

o from Hilbert-Frege systems to Gentzen systems

from axiom-style to sequent-style, and back
from sequent calculus to natural deduction

o other deduction-based approaches
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Proof Theory (not ‘Syntax’!)
@ on the inductively defined set of derivations
@ derivations induce consequence relations

Theorem. All logics are presentable as Hilbert-Frege systems.
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Some desirable properties

What and what for?
purity, simplicity, and whatnot (‘harmony’?)

(*]

strategical reasoning, termination

°
@ recursive presentations
o analyticity

°

consistency




Some characteristic CPL-derivable sequents
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Exercise: Prove the above using the abstract characterizations of the
respective connectives.



An H-system for CPL
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A (simplified) G-system for CPL

Structural rules
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A (simplified) G-system for CPL

Structural rules
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Exercise: Show that the H-system and the logical rules of the G-system

are interderivable.



ND for CPL

Intro & Elim rules (framework Set-Fmla)
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Exercise: Derive the rules of ND from the rules of the G-system.
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Beyond the classical case

Capturing other classes of connectives
o positive modal connectives
@ negative modal connectives
@ restoration connectives

o ... and much morel!




