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On the meaning of sentences
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On a many-valued notion of logical entailment

‘Preservation-based’ notions on S induced by M (Tarski-inspired)

A compatibility relation:
Π ▶ Σ iff Av :Π and Ev :Σ, for some v ∈ Hom(S,V)

A consequence relation on S: Π ▷ Σ iff it is not the case that Π ▶ Σ

Set [Av :Ψ iff v(Ψ) ⊆ A] and [Ev :Ψ iff v(Ψ) ⊆ E].
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Let there be valuations!
Fix an algebra of sentences S.
A logical matrix M := ⟨V,A⟩, is such that:

V is an algebra similar to S

V, the set of truth-values, is the carrier of V
the values in A ⊆ V are called designated, (‘ways of Asserting’)
and those in E := V \ A are called undesignated (‘ways of dEnying’)
Hom(S,V) collects all valuations on S induced by M,
that is, all homomorphisms from S to V
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Interpreting the connectives

On giving meaning to connectives, from a denotational viewpoint
The deterministic case:
Connectives interpreted as operations on algebras of ‘truth-values’.
Valuations as homomorphisms.

The non-deterministic case:
Connectives interpreted as operations on multi-algebras.
Valuations are not uniquely determined from truth-value assignments.

On giving meaning to connectives, from a denotational viewpoint
A Creation story:

connectives are born with a fully indeterministic interpretation. . .
axioms (in the framework Set-Set) induce determinizations!

Conversely:
axiomatizations may be directly extracted from
non-deterministic truth-tabular interpretations of the connectives
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misc

Another way of generalizing logical matrices
considering additional sets of designated values
using the latter to define a multi-dimensional notion of entailment

More on bivalent interpretations
Categoricity: “a logics cannot have two distinct bivalent semantics”

consequence relations are not categorical
generalized consequence relations are categorical

‘The familiar Galois connection between Syntax and Semantics’
For a fixed propositional signature: (check this link)

the more axioms one adds, the less models one has
the less axioms one has, the more models one adds

https://www.logicmatters.net/resources/pdfs/Galois.pdf

