

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Cálculo 1 (MTM3101 e MTM3110)

Lista 3.1 - Diferencial

Última atualização: 27 de maio de 2022.

Exercícios Principais

P 1	Encontre	a dife	rencial	das	func	റ്റെട	ahaiyo	
г 1.	Епсопие	a une	renciai	uas	rung	oes	abaixo	١.

(a)
$$f(x) = xe^{-4x}$$
.

(b)
$$y = \ln(1+t^4)$$
.

P2. Determine a diferencial das funções abaixo, com os valores de x e dx indicados.

(a)
$$y = e^{x/10}$$
, $x = 0$, $dx = 0,1$.

(b)
$$f(x) = \cos(\pi x), x = \frac{1}{3}, dx = -0.02.$$

(c)
$$f(x) = \sqrt{3+x^2}$$
, $x = 1$, $dx = -0.1$.

P3. Determine Δf e df para as funções abaixo, com os valores de x e $dx = \Delta x$ indicados.

(a)
$$f(x) = x^2 - 4x$$
, $x = 3$, $dx = 0.5$.

(b)
$$f(x) = \sqrt{x-2}, x = 3, dx = 0.8.$$

(c)
$$f(x) = e^x$$
, $x = 0$, $dx = 0.5$.

P4. Use diferencial para aproximar as quantidades abaixo.

(a)
$$(1,999)^4$$
.

(b)
$$\frac{1}{4.002}$$
.

(c)
$$\sqrt[3]{1001}$$
.

(d)
$$e^{0,1}$$
.

P5. Use diferencial para estimar o volume de tinta necessário para pintar uma grande esfera com raio $50 \, m$ com uma camada de $1 \, mm$ de tinta.

P6. A aresta de um cubo mede $10 \, cm \pm 0.05 \, cm$, indicando que a margem de erro na medida da aresta é $0.05 \, cm$, para mais ou para menos. Determine o volume e a área da superfície do cubo com suas respectivas incertezas nas medidas (use diferenciais para estimar a incerteza).

P7. Ao estudar o movimento de um pêndulo simples, os físicos costumam aproximar sen θ por θ quando θ é um ângulo pequeno (próximo de 0). Justifique essa aproximação.

P8. Considere $f(x) = e^{ax}\cos(bx)$. Sabe-se que, para x = 0, df = 5dx e df' = 16dx. Determine a e b.

P9. Interprete, geometricamente, o que significa $dV = 3a^2da$, em que V é o volume de um cubo de aresta a. Também interprete geometricamente o diferencial da área de um quadrado.

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Cálculo 1 (MTM3101 e MTM3110)

Gabarito parcial da Lista 3.1

Diferencial

Última atualização: 27 de maio de 2022.

Exercícios Principais

P1.

(a) $df = (1-4x)e^{-4x}dx$.

(b) $dy = \frac{4t^3}{1+t^4}dt.$

P2.

(a) dy = 0.01.

(b) $df = \frac{\pi\sqrt{3}}{100}$.

(c) df = -0.05.

P3.

(a) $df = 1 e \Delta f = 1,25$.

(b) $df = 0.4 \text{ e } \Delta f = \sqrt{1.8} - 1 \cong 0.34.$

(c) $df = 0.5 \text{ e } \Delta f = e^{0.5} - 1 \cong 0.65.$

P4.

(a) Usando a função $f(x) = x^4$, x = 2 e dx = -0,001, e lembrando que $df = f'(x)dx = 4x^3dx$, temos

$$(1,999)^4 = f(x+dx) \cong f(x) + df = 16 - 0,032 = 15,968.$$

Portanto, $(1,999)^4 \cong 15,968$.

(b)
$$\frac{1}{4.002} \cong 0.249875.$$

(c)
$$\sqrt[3]{1001} \cong \frac{3001}{300} \cong 10,00333.$$

(d)
$$e^{0,1} \cong 1,1.$$

P5. $10\pi m^3 \cong 31,4 m^3$.

P6.
$$V = 1000 \, cm^3 \pm 15 \, cm^3 \, e \, A = 600 \, cm^2 \pm 6 \, cm^2$$
.

P7. Seja $f(x) = \operatorname{sen} x$. Observe que $df = (\cos x)dx$ e que, para x = 0, df = dx. Para valores pequenos de dx, tem-se $\Delta f \cong df = dx$. Como $\Delta f = f(dx + 0) - f(0) = \operatorname{sen}(dx) - \operatorname{sen} 0 = \operatorname{sen}(dx)$, então $\operatorname{sen}(dx) \cong dx$ para valores pequenos de dx. Trocando o nome de dx para θ , concluímos que $\operatorname{sen} \theta \cong \theta$ para valores pequenos de θ .

P8.
$$a = 5 \text{ e } b = 3 \text{ ou } b = -3.$$

P9.