Philosophy of Logic Theories, translations, combinations

João Marcos

UFSC

2024.1

Axioms are typical ways in which theories are *presented*.

Axioms are typical ways in which theories are *presented*. However, what really matters, in general, is what follows from them!

Axioms are typical ways in which theories are *presented*. However, what really matters, in general, is what follows from them!

The received view

Theories are fixed points of consequence operators.

Axioms are typical ways in which theories are *presented*. However, what really matters, in general, is what follows from them!

The received view

Theories are fixed points of consequence operators.

Spaces of theories

Theories are all one needs to know about a certain consequence operator:

• in the framework Set-Fmla

[Wójcicki 1988]

- in the framework Set-Set [Blasio-Caleiro-Marcos 2021] Note: Set-Set consequence usually has many Set-Fmla companions!
- consequence is finitary iff the space of all theories is closed under ultraproduts

Axioms are typical ways in which theories are *presented*. However, what really matters, in general, is what follows from them!

The received view

Theories are fixed points of consequence operators.

Spaces of theories

Theories are all one needs to know about a certain consequence operator:

• in the framework Set-Fmla

[Wójcicki 1988]

- in the framework Set-Set [Blasio-Caleiro-Marcos 2021] Note: Set-Set consequence usually has many Set-Fmla companions!
- consequence is finitary iff the space of all theories is closed under ultraproduts

Additional advantage of working with gcrs

Theories that are not finitely axiomatizable using consequence relations may still be finitely axiomatized using generalized consequence relations.

Let $\mathcal{L}_1 := \langle \mathbb{S}_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle \mathbb{S}_2, \triangleright_2 \rangle$ be two logics. Consider a mapping $\star : \mathbb{S}_1 \longrightarrow \mathbb{S}_2$.

Let $\mathcal{L}_1 := \langle \mathbb{S}_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle \mathbb{S}_2, \triangleright_2 \rangle$ be two logics. Consider a mapping $\star : \mathbb{S}_1 \longrightarrow \mathbb{S}_2$.

The problem

When and how could \mathcal{L}_2 be used to *do the same job as* \mathcal{L}_1 ?

Let $\mathcal{L}_1 := \langle S_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle S_2, \triangleright_2 \rangle$ be two logics. Consider a mapping $\star : S_1 \longrightarrow S_2$.

The problem

When and how could \mathcal{L}_2 be used to *do the same job as* \mathcal{L}_1 ?

Preserving consequence

[Epstein 1990, Carnielli & D'Ottaviano 1997]

In case

```
\Pi \triangleright_1 \Sigma \implies \Pi^* \triangleright_1 \Sigma^*
```

we call \star a translation from \mathcal{L}_1 to \mathcal{L}_2 . If the converse also holds, we say the translation is conservative.

Let $\mathcal{L}_1 := \langle S_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle S_2, \triangleright_2 \rangle$ be two logics. Consider a mapping $\star : S_1 \longrightarrow S_2$.

The problem

When and how could \mathcal{L}_2 be used to *do the same job as* \mathcal{L}_1 ?

Preserving consequence

[Epstein 1990, Carnielli & D'Ottaviano 1997]

In case

 $\Pi \triangleright_1 \Sigma \implies \Pi^* \triangleright_1 \Sigma^*$

we call \star a translation from \mathcal{L}_1 to \mathcal{L}_2 .

If the converse also holds, we say the translation is conservative.

Some applications

- definitional equivalence
- homophonous translations
- recovering (or not!) a logic inside another
- providing semantics to a given logic characterized by other means

Let $\mathcal{L}_1 := \langle \mathcal{S}_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle \mathcal{S}_2, \triangleright_2 \rangle$ be two logics.

Let $\mathcal{L}_1 := \langle S_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle S_2, \triangleright_2 \rangle$ be two logics.

The problem

How to merge the reasoning capacities of \mathcal{L}_1 and \mathcal{L}_2 ?

Let $\mathcal{L}_1 := \langle S_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle S_2, \triangleright_2 \rangle$ be two logics.

The problem

How to merge the reasoning capacities of \mathcal{L}_1 and \mathcal{L}_2 ?

Fibring logics

[Gabbay 1998]

We call $\mathcal{L}_1 \bullet \mathcal{L}_2$ the least conservative extension of both \mathcal{L}_1 and \mathcal{L}_2 (when it exists).

Let $\mathcal{L}_1 := \langle S_1, \triangleright_1 \rangle$ and $\mathcal{L}_2 := \langle S_2, \triangleright_2 \rangle$ be two logics.

The problem

How to merge the reasoning capacities of \mathcal{L}_1 and \mathcal{L}_2 ?

Fibring logics	[Gabbay 1998]
We call $\mathcal{L}_1 \bullet \mathcal{L}_2$ the least conservative extension of both \mathcal{L}_1 and \mathcal{L}_2 (when it exists).	
Some special cases, some difficult problems	
 fusions and products of modal logics avoiding unwanted interactions the semantics of fibring (particularly simple if one uses the Set-Set framework!) 	[Caleiro-Marcelino 2023]